EE 330 Spring 2024

HW4 Solutions

1) No of wafers produced by 248 nm in 4 years $=80 \times 24 \times 365 \times 4=2803200$
cost per wafer for 248 nm machine $=10 \mathrm{M} / 2803200=\$ 3.17$
cost per process $=\$ 35.7$.

No of wafers produced by 193 nm in 4 years= $20 \times 24 \times 365 \times 4=700800$
cost per wafer for 248 nm machine $=40 \mathrm{M} / 700800=\$ 57.08$
cost per process $=\$ 570.8$
wafer area $=\mathrm{pi}^{*}\left(300^{*} 10^{-3}\right)^{2} / 4=70650$ sq mm
die area of 90 nm chip is 50 sq mm .
die/wafer for 90nm wafer = wafer area/die area $=1413$ dies/ wafer die area of 50 nm chip is going to reduce by a factor of $(90 / 50)^{2}$

This gives us the die area of the 50 nm chip $=15.43 \mathrm{~mm}^{2}$
die/wafer for 50nm wafer = wafer area/die area = 4578 dies /wafer
cost per chip of a 248 nm machine $=35.7 / 1413=\$ 0.025$ per chip
cost per chip of a $193 \mathrm{~nm}=570.8 / 4578=\$ 0.125$ per chip
Therefore, we can say that it costs about 5 times more to manufacture a chip at 50 nm node.
2) Gate oxide thickness of $\mathrm{Si}-\mathrm{O} 2=2 \mathrm{~nm}$

$$
\frac{\varepsilon(\mathrm{SiO} 2) * A}{d_{\mathrm{SiO2} 2}}=\frac{\varepsilon(\mathrm{HfO} 2) * A}{d_{H f O 2}}
$$

We take the $\varepsilon(\mathrm{SiO} 2)=3.9$ and $\varepsilon(\mathrm{HfO} 2)=20$
We get the gate oxide thickness of $\mathrm{HfO} 2=10.3 \mathrm{~nm}$
3) From lecture notes, diameter of oxide layer $=0.35 \mathrm{~nm}$
\rightarrow Volume of oxide layer $=\frac{4}{3} \pi\left(\frac{0.35}{2}\right)^{3}=0.0224493 \mathrm{~nm}^{3}$
\rightarrow Volume of oxide layer $=7 \mathrm{~nm} \times 14 \mathrm{~nm} \times 25 \times 10^{-10} \mathrm{~m}$

$$
=245 \mathrm{~nm}^{3}
$$

\Rightarrow Number of siticon diexide nolecules $=\frac{245 \mathrm{~nm}^{3}}{0.0224493 \mathrm{~nm}^{3}}$
$=10913.5$ molecules
4) The resistivity of $\mathrm{Al}=2.65 * 10^{-8} \Omega \cdot \mathrm{~m}$

$$
\begin{aligned}
\text { Resistance } & =\rho \frac{L}{A} \\
& =2.65 \times 10^{-8} \times \frac{1000 \times 10^{-6}}{20 \times 10^{-9} \times 40 \times 10^{-9}} \\
& =33125 \Omega
\end{aligned}
$$

5) The lowest resistance material would be Silver. One of the reasons is that they are not used to form metal connects because they are more immune to oxidization as compared to Cu or Al . Also, during the metallization process, they can migrate and enter the Silicon which alters the behavior of the CMOS.
6) The loss of material per cut $=150$ um

Typical thickness of $12^{\prime \prime}$ silicon wafer $=775 u m$.
Thickness of material removed from Silicon pull per wafer $=150 \mathrm{um}+775 \mathrm{um}=925 \mathrm{um}$
Total number of wafers from the Silicon pull $=2 / 925 u=2126$ wafers
There is an additional $0.162 * 925 u=149.85 u m$ of Silicon being wasted in the process.
7)

Contact resistance $\rightarrow 14.6$ ohms
poly sheet $\rightarrow 21.7$ ohms $/ 57$

$$
\text { Capacitance poly } \rightarrow 82 \mathrm{aF} / \mathrm{Mm}^{2}=82 \times 10^{-18} \mathrm{~F} / \mathrm{um}^{2}
$$

(a) $\quad 1 \mathrm{KHz}=\frac{1}{\mathrm{RC}}$, \quad Capacitance $=8_{p} F$

$$
\begin{aligned}
& \text { Capacitor Area } \\
& 8_{p} F=\text { Capacitance poly } \times \text { Capacitor Area } \\
\Rightarrow & \text { Capacitor Area }=\frac{8 p \mathrm{~F}}{\text { Capacitance poly }}=\frac{8 \times 10^{-12} \mathrm{~F}}{82 \times 10^{-18} \mathrm{~F} / \mathrm{um}^{2}} \\
\Rightarrow & \text { Capacitance Area }=97560.98 \mathrm{\mu m}^{2}
\end{aligned}
$$

Resistor Area

$$
\begin{aligned}
& 1000 \times 2 \pi=\frac{1}{8 p F \times\left((14.6 \times 2)+\left(21.7 \times N_{s}\right)\right)} \\
& \rightarrow \quad N_{s}=916790=\frac{\text { Resistor length }}{\text { Resistor width }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If Resistor length }=1 \mathrm{um} \\
& \text { Resistor width }=916790 \mathrm{um} \\
& \Rightarrow \text { Resistor Area }=916790 \mathrm{um}^{2} \\
& \rightarrow \text { Total Filter Area }=916790 \mathrm{um}^{2}+97560.98 \mathrm{um}^{2} \\
&=1014350.98 \mu \mathrm{~m}^{2} \\
& \rightarrow \text { Capacitor }=8 \rho F \\
& \text { Resistor }=\frac{1}{2 \pi \times 1000 \times 8 p}
\end{aligned}
$$

(b) Area of Capacitor + Area of resistor $=$ Total Area

$$
\begin{aligned}
& \rightarrow \quad A_{\text {capacitor }}+A_{\text {resistor }}=A_{\text {total }} \\
& (2 \pi \times 1000)=\frac{1}{\left(82 \times 10^{-18} \times A_{\text {cap }}\right) \times\left[(14.6 \times 2)+21.7 \times N_{5}\right]} \\
& A_{\text {resistor }}=N_{5} \times \text { dimension of square }
\end{aligned}
$$

$\rightarrow 0.6 \mu \mathrm{~m}$ is minimum for 0.5μ technology
thus, to find minimum area, dimension of Square $=(0.6 \mu \mathrm{~m})^{2}$

$$
\begin{aligned}
& \Rightarrow(2 \pi \times 1000)=\frac{1}{\left(82 \times 10^{-18} \times A_{\text {cap }}\right) \times\left[(2 \times 14.6)+\left(21.7 \times \frac{A_{\text {res }}}{(0.6 \mu m)^{2}}\right]\right.} \\
& \Rightarrow 2000 \pi=\frac{1}{\left(82 \times 10^{-18} \times A_{\text {tap }}\right) \times\left[(2 \times 14.6)+21.7 \times \frac{A_{\text {total }}-A_{\text {tap }}}{0.36}\right]}
\end{aligned}
$$

let $A_{\text {cap }}=x$

$$
\begin{aligned}
& A_{\text {total }}=x-4.84424 \times 10^{-13}+3.21995 \times 10^{10} x^{-1} \\
& \rightarrow \text { minimum } A_{\text {total }}=\left(A_{\text {total }}\right)^{\prime}=0 \\
& \left(A_{\text {total }}\right)^{\prime}=1-3.21995 \times 10^{10} x^{-2} \\
& \Rightarrow\left(A_{\text {total }}\right)^{\prime}=1-\frac{3.21995 \times 10^{10}}{\left(A_{\text {cap }}\right)^{2}}=0 \\
& \Rightarrow \quad A_{\text {rap }}=\sqrt{3.21995 \times 10^{10}}=179442.2 \mu \mathrm{~m}^{2} \\
& \Rightarrow A_{\text {total }}=179442.2-4.84484 \times 10^{-13}+\frac{3.21995 \times 10^{10}}{179442.2} \\
& =\underline{358884 \cdot 4} \mathrm{~mm}^{2} \\
& \Rightarrow \text { resistor }=358884.4-179442.2=179437.4 \mu^{2} \\
& \text { Comparing the values obtained in part (b) to (a), it can } \\
& \text { be observed that the values obtained in part (a) are } \\
& 3 \text { tines higher than (b) }
\end{aligned}
$$

8) A) width and length dimensions are overlap of polysilicon gate and active area width $=3 \mu \mathrm{~m}$
length $=1 \mu \mathrm{~m}$
B) Positive photoresist = exposed material is removed when developed
W is not affected by the dimensions of the Poly, only by dimensions of active but L is affected Underdeveloped photoresist = not enough is removed,
Under-etched = not enough is removed. It follows if L1 is the original length (lu),

$$
L=L 1-2 * 0.1-2 * 0.1=0.6 u \text { and } W=3 u
$$

C) Negative photoresist = unexposed material is removed when developed As before, W is not affected by the dimensions of Poly but L is affected

Underdeveloped photoresist = too little is removed but since negative photoresist, provides too much polysilicon protection. Under-etched, not enough is removed.

Thus $L=L 1+2 *(0.1)-2^{*}(0.1)=1 u+0.2 u-0.2 u=1 u \quad$ and $W=3 u$

Note in this case the two deviations compensate for each other and the desired length is obtained.
9)
(i) $R=\rho \frac{i}{A}=\rho \frac{L}{w_{i d t h} \times \text { thickness }}$
\Rightarrow thickness $=\frac{L P}{R \times \text { width }}$
Resistivity of aluminium $=2.65 \times 10^{-8} \Omega-\mathrm{m}$
\Rightarrow tHickness $=\frac{250 \times 10^{-6} \times 2.65 \times 10^{-8}}{25 \times 2 \times 10^{-6}}=1.325 \times 10^{-7} \mathrm{~m}$
(ii) Resistivity of Copper $=1.72 \times 10^{-8} \Omega-m$
$\Rightarrow \quad 25 \Omega=1.72 \times 10^{-8} \times \frac{\mathrm{L}}{1.325 \times 10^{-7} \times 2 \times 10^{-6}}$

$$
\Rightarrow L=3.852 \times 10^{-4} \mathrm{~m}
$$

10)

Patterned Edges
bifference in wafer $=5000 \times 10^{-10} \times(1-0.47)$
thickness

$$
=2.65 \times 10^{-7} \mathrm{~m}
$$

